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ON A DYNAMIC CONTACT PROBLEM FOR COMPOUND FOUNDATION’

V.I. AVILKIN and E.V. KOVALENKO

The two-dimensional problem {(plane state of strain) for interaction of a moving
solid (die) with a layer of an ideal incompressible liquid of finite depth is in-
vestigated. The pressure from the die on the hydraulic foundation is transmitted
through a thin covering. The die moves along the boundary of the covering at a
constant speed without friction. This type of problem arises, for instance, when
studying processes produced in the dynamic effects of solids on the surface of an
ice cover.

Using the methods of the operational calculus in a moving coordinate system, the
problem is reduced to finding the pressure function under the die from an integral
equation of the first kind with a difference kernel. The Fourier transform of the
latter has singularities on the real axis that determine the shape of the surface

of the covering outside the die. Different shapes of the die foundations are discus-
sed, and the characteristic features of the solution of the resulting integral equa-
tion are studied. Conditions for complete adherence of the die and the foundation
are clarified, and examples in which the die pulls apart from the surface of the
covering are studied. A numerical analysis of the problem for different shapes of
the foundations of the die is presented.

1. Suppose an elastic layer (G, v) of small thickness h lies on the surface of a layer
(H < y<0) of a heavy ideal incompressible liquid. We assume that a rigid die clamped to
the foundation with a force Pand eccentricity e of the application of the force relative to
the center of the die moves, along the boundary of such compound foundation,without friction
at a constant speed W. We will also assume that in the course of motion the die does not
cause the covering to peel off the liquid. We suppose that in a moving coordinate system
bound to the die (2'0’y), its foundation is described by the function y = f(z'), and that the
line of contact is determined by the inequality —¢ < 2’ < b.

The physico-mechanical properties of a thin covering will be described by the Kirchhoff—
Love plate equations for the case of a lengthwise constant force o:

Du) — hov” = p* (z, t) — ¢* (z, t) — hy*v” (1.1)
D =aGr6(1—wT

with ¢ >0 corresponding to tensile forces while o < 0, compressive forces. In (l.1), v
denotes the displacement of the points of the mid-plane of the covering along the y-axis,
p* (z,t) = p (z') is the reaction pressure on the layer from the direction of the liquid, and
g* (z,t) = ¢ {(z') is the contact pressure (which is nonzero only when —c =z’ < b, 2’ =1 + Wt
and y* is the density of the material of the covering).

To describe the mechanical properties of the liquid, we will use the approximation theory
of waves of low amplitude /1/, which may be derived from the basic exact theory of irrotation-
al flows of an ideal incompressible liquid by linearization of the conditions imposed on the
free surface, under the condition that the particular wave motion differs little from undist-
urbed flow from a horizontal free surface. Thus, we have
Ap=0, v, =T W, vy=—3$;’—, =—o(W 4%+ ay) (1.2)
Here ¢ (2, y) is the velocity potential; p, increment in pressure in the liquid; p, density
of liquid; g, gravitational constant; and v, and vy, projections of the velocities of the
particles of the liquid on the axes of the moving coordinate system.

It is know that

v=—[8 +azx' — &) (—c L2 Vb (1.3)
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by virtue of the contact condition between the die and the covering, where § i ax’
rigid displacement of the die under the influence of the force P and moment M = Pe¢
to it.

Because the covering is relatively thin, we may remove the condition (1.1} from the mia-

plane at the boundary of the liquid layer y = 0. 1In the moving coordinate system, we will
have

is the

applieq

DY — T =p () —qg(z'), T =h(c —y*W¥) (1.4}

Following /1/, the contact condition between the liquid and the surface of the covering
is written in the form

d@ldy = Wav/oz' (1.5)

Formula (1.4) and the last relation in (1.2) may be represented in accordance with (1.5)
{when y = 0) on the form

2

a2

7 p
9z 9y (D a:-') — T(P)=W[P(I)—q(z)] (1.6)
6[)_ // BE‘P . _, ¢
PE —~png7;fngTy_>

Here and below, the prime will be omitted from the moving coordinate <z’
To produce a closed formulation of the boundary-value problem (1.2), (1.6), 1t is neces-
sary to add a non-flow-through condition for the foundation of the layer of liquid:

v, (z, —H) =0 (1.7}
By means of an integral Fourier transformation, we solve the differential equation (1.2)
for ¢ (z, y) under the boundary conditions (1.6), (1.7). We obtaln the following expression

for the displacement v at y = Q:

e

1
v(2) = — 57

du

q(8) dg S Al F Ayin® = Agu oth Hu + A,

(1.8)

| e

¢

Ay=D, A, =T, A; =olV? 41 = ¢

Note that the expression in the second integral in (1.8) may have four single real poles
4¢; and ¢, symmetrically located relative to the origin. The path I is selected in accor-
dance with the principle of maximal absorption and coincides everywhere with the real axis,
deviating from it in passing around the two large (in absolute value) poles from below, and
two other poles from above.

Now using condition (1.3), we obtain an integral equation for the unknown contact pres-
sures g¢(z) under the die. In dimensionless variables and with the notation

, b~ , b b—
R e e

2h H
d=g P=
, 2 b—c¢ 1 b+c b—c¢ 2
¥ =bis e, [ 2 =)

9(§' bt 4 %i)hsl) l=g (), A'=AD' (i=2,3,4)

2

we obtain

{e@K (S ) t=nlo +ar—r@) (=I<D) (1.9)
—1
K(z):_’TS L (w)yevz du (1.10)
r
L@ = sh fu

{(ut + A;u? -+ A;)sh Pu — Aguchpu

Here and bleow, the prime will be omitted from the dimensionless variables and the nota-
tion.
Note that we must add one more static condition to equation (1.9):
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1

No==2PWD7 (b 4oyt = § g(2)de (1.11)

b

Ny==4Peh®D™t (b4 c)y 2= . ;‘;‘ Ny

zg (x)dz 4
H

[ e

Note, too, that, from the physical meaning of the problem, we must have v (z) & C (—R,
R), where R is an arbitrarily large number. Here C (—R, R) is a space of functions continu-
ous whenever |z{< R.

In the special case of a die at rest (W =0), the problem corresponds to flexure of a
plate on a Fuss—Winkler foundation, since when W =20, the layer of a heavy ideal liquid
behaves as a Fuss— Winkler foundation with the coefficient k= pg 1In /2/, a closed solution
of the flexure problem for a plate on a Fuss—Winkler foundation in the case T =0 was ob-
tained using a section partitioning method. The results of this paper lead us to conclude
that contact forces arising between a die and the surface of the plate will be composed of a
distributed load as well as concentrated forces acting on the edges of the line of contact.
It has been proved /3/ that such a structure for contact forces is preserved even when T=0.

2. Let us study the effect of die on a hydraulic foundation operating through a plate
using the integral equations (1.9) and (1.10) obtained above. For this purpose, we will in-
vestigate the properties of its kernels and the structure of the solution. In view of the
asymptotic behavior of L (u),

Lwy=A4+4+0@u) (u—>0), 4= (4 — 4,10
L@=u*t+0@?®) (lu|—>x)

we may formulate the following lemma.

Lemma. For all values of |z |<{ R(R is any arbitrarily large number), the representa-

tion
K@=—|2P+F@), F@HEB!(~RR) (2.1)
F _m L 9 2 akckl ulz?\ du
(z)_§ [ (u) — ;uz_ck2 ](cosuz- 1 —--—2—>-7— +
1
2 (—1)Fz%* [bk - (2+_‘z_1)| (0116‘21’”l - azcgkﬂ)} -
=)
0 1 X
a (2(k+)1)1 [alcikn(‘z‘zkﬂ+z2k+1)+a2cgk+1 (|zl2kﬂ-‘32kﬂ)l
=2
K 2 a,c
bo — [L u) — 2 *_h]du
o S (1) ’;uz_ck,
H % a,e,3
b1=S [u’L(u)—ZkZ‘u_zk—"z]du
o =1 %
is valid.

Here Bi* (—R, R) is the space of fucntions whose k-th derivatives satisfy the HYlder

condition on the segment [—R, R] with index 0 </ p <1, and the g, are the residues of the
function L (u) at the poles ¢ (kA =1, 2).

To prove the lemma, we will pass over to integration over the real axis in (1.10). We
will have
: (¢ 2 a,c 2
K (z) = S LL(u)—2 Z“?_k—t—?] cos uzdu — nz ay[siney |z| — (—n¥ sin¢z)
0 k=1 k k=1

Further, using the values of the integrals

o
_ du F] ' u?z?y\ du T
(1 cosuz)7=T[z|, 5(cosuz—1+T)F:u|z|a

272 4
(1——cosuz—uTz+‘.‘i§)'.i%=ilz|5

e ey
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we obtain (2.1).
Let us study the structure of the solution of this integral equation (1.9:, .1.10:. ror
this purpose, we consider the auxiliary equation

1

(lz—tpe®dE=12p() (z]<1) (o)
—1

By the remarks in Sect.l, the solution g (z) of the integral equation (2.2) must comprise
as its terms delta functions at the points z = 41, which would reflect the existence of con-
centrated forces in the contact forces at the edges of the line of contact. 1In addition, from
the physical meaning of our problem, v"(x) €& C(—R, R), as we have already noted. This con-
dition imposes a constraint on the order of the generalized function g (z). In light of the
foregoing, we may state the following:

Theorem 1. If W (@) e C(—1,1) in (2.2) and if the relations
20° (1) — 49’ (1) + 29" (—1) + 3p (1) + 3p (1) = 0 2.
20" (1) 4 (—1) — 29" (1) +3p (1) + 3P (—1) =0

are satisfied, then the solution of the integral equation (2.2) in a space of slowly increas-
ing generalized functions ® /3/ exists, is unique, and has the form

g@ =9 @ +Pd(x+1)+ Pb(x—1) (2.4)
Py=” (—1) + Y, " (1) 9" ()], Py = —p” (1) + Y [ (1) 5 9" (—=1)] (2.5)

Note that the equations (2.3) which are conditions that state the solution of (2.2) (and,
consequently, (1.9) and (1.10)) are bounded, may be used to define the unknown domain of con-
tact of the die and the covering.

To prove the theorem, we verify that a function g (z) of the form (2.4) satisfies equa-
tion (2.2). In fact, substituting it in (2.2) and using the well-known properties of the
delta function /4/, we arrive at the conclusion that the integral equation (2.2) becomes an
identity if (2.3) and (2.5) are satisfied. The uniqueness of our solution (2.4) follows from
a well-known theorem (/4/, p.158).

Let us now rewrite the integral equation (1.9) in light of the representation (2.1) in

the form
1

{e@®|z—tPdt=129() (z|<D (2.6)
1

v@ =1t —r@ - e@F (=) @]
23

We assume that r® (x) =€ (—1,1). If we now suppose that g(z) &= @ (with order equal to
zero), then by virtue of the properties of F (z) given in the lemma, we will have YW (z) &=
C (—1,1). Hence, by Theorem 1, we conclude that Theorem 2 holds.

Theorem 2. Suppose r® (z) & C (—1, 1) and let equations (2.3) hold. Then if the solu-
tion of the integral equation (2.6) in a space of slowly increasing generalized functions ex-
ists, it will have the form

g@ =g* (@) +Pd(z+ 1) +Pb(z—1) (2.7

while the function g* (z) = C (—1, 1) also satisfies a Fredholm equation of the second kind with
continuous kernel and continuous free term:

: z—1

£ @)+ | B OFY (IR = — A% @) — | PO (ZEL) 4 PO (555)] (<) e

bt §

The constants P;{(j =1,2) are given by (2.5), while the boundaries of the unknown region
of contact between the die and the surface of the covering ¢ and b are determined from (2.3).

To prove the theorem, assuming that the function ¥ (x) in (2.6) is known for the time be-
ing, we invert the integral operator in {2.6) with kernel Jz—§ |3 By (2.4), we obtain an
integral equation of the second kind for g (z):
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1
@) + = | g@F (272) = =M@+ PdE + 0+ PhE— D (7l (2.9)
-1

The solution of this equation will be found in the form (2.7). Substituting (2.7) in
(2.9) and using the properties of the delta function, we arrive at the integral equation (2,8).
If equation (2.8) is solvable for a specified value A e (0, ), the function g* (z) & C(—1, 1).
The initial integral equation (2.6) is uniquely solvable in this case.

Theorem 3. 1In the class of functions g* (z)e= C(—1, 1) NV (—1, 1), the homogeneous

equation (2.8)
1

¢t @ + o § e @FO(ETE) =0 (z]<N) (2.10)

-1

does not have positive eigenvalues. Here V (—1,1) is the space of functions with finite
variation on the segment [—1, 1].
To prove the theorem, we introduce the Fourier transform of the function g* (z):

1
6*w = § g*(x) e dz (2.11)
-1
and rewrite the homogeneous equation (2.10} as follows:

g% (2) — o S {[Azk”u’ — Aqud oth (Bhu) 4 Au} L (hu) + (2.12)
9 > a9
— Wu?—c 7
2 1
LY et {2 @ [0 2 fo 2] —(— 1 sin £ (2 —p | 20

k=1 -1

}G' (u) e* du —

Because of the properties of g*(z) given in the conditions of the theorem, the function
G* (u) is at least continuous and has the estimate /5/

GFW=0(ul™ (Jul— ) (2.13)

Assuming that the nontrivial solution g* (z) exists for the homogeneous equation (2.12),
we multiply (2.12) scalarly by g*({z). If z—§>>0, in light of the Parceval equation /4/,
we arrive at a relation of the form
o 2

5
- § [K‘u‘L(M)——2;:—5%‘%;;]10*(u)l’du +imat(6* (—e)F— G @ H=0  (2.14)
— =1

If 2z—E8< 0, a, in (2.14) must be replaced by a,, and cy by ¢, and conversely.

Separating the real and imaginary parts in (2.14) and bearing in mind the fact that the
integrand is sing-constant (this may be verified numerically for different parameters of the
problem), we conclude that G* (u) =0, , whence g* () =0,, and the theorem is proved.

Now suppose that a die of thickness 2a has the corner points

¥ = (F2a + ¢ — b){c + b

(further, for the sake of definiteness, we will consider the case of a die with a plane recti-
linear base). Then, bearing in mind in the computations the fact that v* (z)& C (—R, R) as well
as the arguments presented in /2/, we may conclude that the die cannot be brought into con-
tact with the surface of the covering (1.3) in the neighborhoods of the angular points. Dif-
ferent variants in which the die is lifted off the plate may be found, in each case the form
depending upon the actual mechanical characteristics of the problems under consideration, which
we will review below.

Note that because of the foregoing and the results of Theorem 2, the solution of the in-
tegral equation (1.9) has in the general case the structure

g@) =h(z) + Pgd(z — 27) + Pyb (z — z*) (2.15)

and that the function k (z) satisfies equation (1.9), where

@ = [Pk (255) 4 P (2521
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and the values of the concentrated forces P;(j =1,2) acting at the points =z = z¥ (1 < -
z* > 1) are found from the linear algebraic system

‘

1

K(0) Py + S h(§)K< ok )dg+1<(";’*)p,,=n(a+m-) (2.16)
=1

)dg+K(‘*;’ ) Po==n1(8 + az)

zt —§

KOP+ { nx(

-1

3. Let us discuss the solution to the integral equation (1.9). For this purpose, we
construct a rational function L* ({) of the form

oz 2
grtr (G@=8—c (3.1)

N
1
L0 =smae U

n=1
from the zeros andpoles of the function L (§) which is meromorphic in the complex plane { =
u-+iv . Here iz, and il, are the zeros and poles of L (%), respectively, lying on the imag-
inary axis and having the asymptote

L2+ 0@ (n— o) (3.2)

(Here we are presenting results for the case in which L ({) has four single poles on the real
axis).
Substituting (3.1) in (1.10), we obtain

N
K(Z)=—2ﬂ[rfsin0f12|+%23nexp(—€n|zl)] (3.3)
n==]

F=1E2>0),j=2(<0),r=RelL (), ¢
R, = iRes [L* (1), iL,] (n=1,2,...,N)

Then the solution of equation (1.9), (3.3) will have the form

N
g@)="T(x) + Z [Tn’fexp(zn—;-) + T,.'exp(nz,. —;—H 4 P8 (@ + 1)+ Ped(z—1) (3.4)
n=1
in accordance with Theorem 2 and previous results /6/, i.e., (3.4) is the sum of a special

solution of the nonhomogeneous differential equation
o d d2 d? N d?
2
H1 ('d_;T -+ z,ﬁ) T(z) = (F_ cﬁ) (75'27 — cz’) nHl (W + §,.2) [0+ az —r{z)] (3.5)
= =

and the general solution of the homogeneous equation (3.5). The values of the constants P£;
(j=1,2) may be found from a system of the type (2.3), while the constants 7T,*¥ satisfy a
linear algebraic system of equations of order 2N, which may be obtained by subsituting
(3.4) in (1.9} and (3.3} and by equating the coefficients of equal exponents in the resulting

expression.
In the case of a parabolic die, for example, we obtain

2
r(x)=vyz?: T(z)= 2 bi', by= — Ay [L* (O)

=0

N
bo—be (M2 (6" — i) — 11— Y (TilEma+ Eha) + TnlEra + Era)}
m==]

N
bi=bad? (@ — ) + - Y, [T Gr — Eva) + T (g — Er)]
m=1
B =0 (" + 207" exp (= 2n/h)  (k=1,2)

The system for determining the constants Iyt after the substitution

tom =T [ (14 5= ) = 5 | 1668”4 20 Cm — 21 exp (2
tam-1 == T,,,’l:z,,, (1 -+ 22—"‘) — %][(cl2 + 2,3 o — 2)]  exp (%")

will have the form
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aN
tj+2|a]ntn=di (3.6)
=3 ~ ~ a1
dajg =M [2(1 + ALY + A2 (" —GNA'G
oy = — M [2(1 + AGY) + A (&G — e al

while for the coefficients a;, we obtain for large enough j and n the asymptote (cf. (3.2))

Qg2 Gajy,2, 1 =0(j exp(— 2mpj)) (p= alH™) (3.7)

—1,,-3y. ) O (18
@aj, 2ne Ogjq, an-1== O (F7IN3);  @gjey, gm Baj, any == O (7'1077)

Then, by (3.7) we may verify that the solution of the system (3.6) for large enough N
will be close to the solution of the corresponding infinite system (N = oo) relative to the
norm of the space I, /8/.

Analogous results may be obtained for a plane die (because of their cumbersomeness, they
will not be presented here). We only wish to note that in this case we must set &, =0, and
the expressions for the right sides will depend on the values of Pjs and P,

4. As an example, let us consider the motion problem (constant speed) for a die moving
along the surface of a layer of ice. The ice will be assumed to be elastic, since the effect
of creep in this case cannot have time to manifest itself and may be neglected. 1In the ca%—
culations, we.will use the following physical /9/ and mechanical constants: G = 2.4-10° N/m",

y* = 880 kg/m”, v =034, p= 1000 kg/m3, ¢ = —5:10° N/m2, ¢=10, and P = 10® N/m,

In studying the motion of a plane die (r(z)=0) with values of the mechanical parameters
under which the function L ({) does not have any poles on the real axis (for example, W W,
for a fixed value of the thickness of the plate, Fig.l), we find that at values pu < 0.4 (= 3-10%
the die will come into contact with the plate only at the two extreme points and that the max-
imal deflection of the plate beneath the die will occur at the middle. When 04 <p<0.145, the
maximal deflections will be shifted from the center of the die, and the distance of the plate
from the die will at the same time decrease. A further increase in the parameter p will lead
to contact between the die and the plate, and with W < W, (precritical mode), the zone of
contact will be symmetric.

There is a more complicated

- et e B \ // contact mode if the speed of the
H'H \ 2 _—1 die exceeds W.. Then the func-
! Z J tion L (%) will have four single
4 0.15 poles on the real axis, symmetric-
\ \ \ { ally located relative to the origin.
\ \ A In Fig.l may be found curves dep-
J < 0.075 T -t icting the variation in the posi-
~—_ .:_:_’_/_];-:—-——""” tive poles ¢ and ¢ over some
2 interval of variation of the speed
Wy s w w o ] ¢ 10 w4 (curves 1,2, and 8 for k= 0.25; 0.30;
and 0.35 m, respectively). If L (%)
Fig.l Fig.2 has a double pole on the real axis,

this will correspond to W.. 1In
this case, the deflections under
the die will increase without

— bound over time (@ (z) ~ V71 /9, 10/.
1\—-— frrem— ] I1f W>W., the upper branches
/<\ 7 of the curves will correspond to
S ~e the variation in ¢ pole, and the
\\ 0 —l ‘1~\\ lower to —,. Note that the val-
1 =~ ues of the real poles will essenti-
% = 4 ally determine the wave pattern
1 e of the surface of the plate behind
0.5 a 05 T 1N I and in back of the die. Thus, the
\\‘\ | wavelength in front of the die
\\\ﬁ will decrease with increasing
Fig.3 _ | speed, and increase behind the die.
8.5 17 s W

The die will be in contact with
the plate over some interval [—c, 8]
Fig.4 and touch it at its rear edge.
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Curves depicting the variation of the zone of contact as a function of the speed of e
die (solid curves) and as a function of the parameter p (broken curves) are presented in Fig.
2 {(curve I correspond to variations in the point ¢, and curve 2, to variations in point ).
Fig.3 shows the variation in the contact pressure function beneath the die. It is clear that
the contact pressure at the leading edge grows with increasing speed (curves 1,2 and & were
obtained for pu =04 at speeds of 8.15, 8.65, and 9.15 m/s, respectively). The variation in
the concentrated forces appearing at the edges of the line of contact are presented (solid
curves) in Fig.4 (curves 1,2, and 3 determine the forces at the points ¢ b and a, respectiv-
ely). The broken curve in Fig.4 shows the variation in the turning angle a-5-10%rad)(the maximal
value of the turning angle of the die corresponds approximately to the maximal forces at the
leading edge of the die), while the dot-and-dash curve corresponds to the deflection cf the
plate beneath the die §6-10* (m) (as the speed W approaches W,, the deflections will grow
markedly) .

At a speed of the die W,=VgH,b the function L ({ will have a double pole at the
origin, which will indicate that deformation of the surface of the plate (understood as a
rigid unit) will be observed together with a wave pattern on the surface. When W>W,, the
rear edge of the die will separate from the plate and contact will be present only allong the
segment [—e¢, b]. As the speed of the die increases over the interval W,<W < W* (B = 2.102, W* =
20.6 m/s), the region of contact will increase, and when W > W* start to decrease. The
turning angles of the die will decrease with increasing speed of the die. Note that a change
in the contact modes between the die and the plate will be related to gualitative variations
in the function L (L),

The authors wish to express their appreciation to V.M. Aleksandrov for his interest in
the present study.
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