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ON A DYNAMIC CONTACT PROBLEM FOR COMPOUND FOUNDATION* 

V.I. AVILKIN and E.V. KOVALENKO 

The two-dimensional problem (plane State Of Strain) for interaction of a moving 

Solid (die) with a layer of an ideal incompressible liquid of finite depth iS in- 

vestigated. The pressure from the die on the hydraulic foundation is transmitted 

through a thin covering. The die moves along the boundary of the covering at a 

constant speed without friction. This type of problem arises, for instance t when 
studying processes produced in the dynamic effects of solids on the surface of an 

ice cover. 
Using the methods of the operational calculus in a moving coordinate System, the 

problem is reduced to finding the pressure function under the die from an integral 

equation of the first kind with a difference kernel. The Fourier transform of the 

latter has singularities on the real axis that determine the shape of the surface 

of the covering outside the die. Different shapes of the die foundations are discus- 

sed, and the characteristic features of the solution of the resulting integral equa- 

tion are studied. Conditions for complete adherence of the die and the foundation 

are clarified, and examples in which the die pulls apart from the surface of the 

covering are studied. A numerical analysis of the problem for different shapes of 

the foundations of the die is presented. 

Suppose an elastic layer (G,v) of small thickness h lies on the surface of a layer 

(H,<t'< 0) of a heavy ideal incompressible liquid. We assume that a rigid die clamped to 

the foundation with a force Pand eccentricity e of the application of the force relative to 

the center of the die moves, along the boundary of such compound foundation,without friction 

at a constant speed W. We will also assume that in the course of motion the die does not 
cause the covering to peel off the liquid. We suppose that in a moving coordinate system 
bound to the die (s'o'y), its foundation is described by the function y = /(x'), and that the 

line of contact is determined by the inequality -c< x'< b. 
The physico-mechanical properties of a thin covering will be described by the Kirchhoff- 

Love plate equations for the case of a lengthwise constant force s: 

DU(') - hov" = p* (z, t) - Q* (2, t) - h~*v" (1.1) 

D = Gh3 [6 (1 - v)l-’ 

with a> 0 corresponding to tensile forces while a<@, compressive forces. In (l-l), v 

denotes the displacement of the points of the mid-plane of the covering along the y-axis, 
p* (2, t) = p(z’) isthe reaction pressure on the layer from the direction of the liquid, and 

q* (z. t) = Q (r') is the contact pressure (which is nonzero only when --c .<. I' .<\ b, x1 == J + Wt 
and y*is the density of the material of the covering). 

To describe the mechanical properties of the liquid, we will use the approximation theory 
of waves of low amplitude /l/, which may be derived from the basic exact theory of irrotation- 

al flows Of an ideal incompressible liquid by linearization of the conditions imposed on the 
free surface, under the condition that the particular wave motion differs little from undist- 
urbed flow from a horizontal free surface. Thus, we have 

Acp=O, v,=g+w, up=+, P=-p(w-$+ggY) (1.2) 

Here cp (I', y) is the velocity potential; p, increment in pressure in the liquid; p, density 
of liquid; g, gravitational constant: and U, and vV, projections of the velocities of the 
particles of the liquid on the axes of the moving coordinate system. 

It is know that 

u = -_(6 + as' - ! @')I (-c <x' < b) (1.3) 
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by virtue of the contact condition between the die and the covering, where 6 r- CL.Z' ir; +_I:._ 
rigid displacement of the die under the influence of the force P and moment M -= PC applrri! 
to it. 

Because the covering is relatively thin, we may remove the condition (1.1) from tile LL~,:- 
plane at the boundary of the liquid layer y = 0. In the moving coordinate system, we will 
have 

Duct) - Tu" = p (5') - p (z'), T =h(o - y*IV) (1.4) 

Following /l/, the contact condition between the liquid and the surface of the coverincj 

is written in the form 

d+3y = Wavlax' (1.5) 

Formula (1.4) and the last relation in (1.2) may be represented in accordance with 11.5) 

(when y = 0) on the form 

(1.6) 

Here and below, the prime will be omitted from the moving coordinate I'. 
To produce a closed formulation of the boundary-value problem (1.2), (1.6), it is neces- 

sary to add a non-flow-through condition for the foundation of the layer of liquid: 

"v (x3 --H)-0 11.7) 

By means of an integral Fourier transformation, we solve the differential equation (1.2) 
for 'p (I, y) under the boundary conditions (1.61, (1.7). We obtain the following expression 

for the displacement v at y = 0: 

(1.8) 
-c 

A, = D, A, = T, Asr= piv', AL = Pg 

Note that the expression in the second integral in (1.8) may have four single realpoles 

-kc, and +cz symmetrically located relative to the origin. The path r is selected in accor- 

dance with the principle of maximal absorption and coincides everywhere with the real axis, 

deviating from it in passing around the two large (in absolute value) poles from below, and 

two other poles from above. 

Now using condition (1.3), we obtain an integral equation for the unknown contact pres- 

sures q(x) under the die. In dimensionless variables and with the notation 

we obtain 

K (z) = + 5 L (u) e-‘~2 du 
r 

(1.9! 

(1.10) 

Here and bleow, the prime 

tion. 

will be omitted from the dimensionless variables and the nota- 

Note that we must add one more static condition to equation (1.Y): 

L@)=(u,+A,ua+ A,)sh BY- A.+ch~u 



N,,=BPh*D-‘(b+c)-‘= i g(x)dx 
-* 
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(1.11) 

N1 = 4Peh*P (b + c)-* = 4 xg (x) dx + g No 
-1 

Note, too, that, from the physical meaning of the problem, we must have u"(r) E C (--R, 

R). where Ris an arbitrarily large number. Here C (-R,R) is a space of functions continu- 

ous whenever Iz\Q R. 
In the special case of a die at rest (W=O), the problem corresponds to flexure of a 

plate on a Fuss-Winkler foundation, since when W= 0, the layer of a heavy ideal liquid 

behaves as a Fuss-Winkler foundation with the coefficient k= pg. In /2/, a closed solution 

of the flexure problem for a plate on a Fuss-Winkler foundation in the case T=O was ob- 

tained using a section partitioning method. The results of this paper lead us to conclude 

that contact forces arising between a die and the surface of the plate will be composed of a 

distributed load as well as concentrated forces acting on the edges of the line of contact. 

It has been proved /3/ that such a structure for contact forces is preserved even when T+ 0. 

2. Let us study the effect of die on a hydraulic foundation operating through a plate 

using the integral equations (1.9) and (1.10) obtained above. For this purpose, we will in- 

vestigate the properties of its kernels and the structure of the solution. In view of the 

asymptotic behavior of L(U), 

L (u) = A + 0 (u’) (u- 0), A = (A, - A,f3-‘)-1 # 0 
L (u) = u- “t-o@-0 (lUl-+~) 

we may formulate the following lemma. 

Lemma. For all values of 1 z j<R(R is any arbitrarily large number), the representa- 

tion 

K(z]=-&-(~l~+~(~), F(z)E&'(- R, R) (2.1) 

is valid. 

Here Rk@ (-R,R) is the space of fucntions whose k-th derivatives satisfy the HBlder 
condition on the segment [-R,R] with index 0< p < 1, and the a, are the residues of the 
function L(u)at the poles ck (k = 1, 2). 

To prove the lemma, we will pass over to integration over the real axis in (1.10). We 

will have 

m 2 S 
II (2) = ‘k’k ~ 

ul- Ckl I 
cosuzdu -SC 

c 
nk [ainch 1 z I- (-i)k sinckr] 

k-1 

Further, using the values of the integrals 
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we obtain (2.1). 
Let us study the structure of the solution of this integral equation ( 

this purpose, we consider the auxiliary equation 

s l~-%Pg(%)dE=12~J(~) (ItlSl) 
-1 

l.“!, ,l 10. . i 1.1 

By the remarks in Sect.1, the solution g(s) of the integral equation (2.2) must comprise 
as its terms delta functions at the points z =&li which would reflect the existence of con- 
centrated forces in the contact forces at the edges of the line of contact. In addition, from 
thephysical meaning of our problem, v"(z) E C (--R, R), as we have already noted. This con- 

dition imposes a constraint on the order of the generalized function g(2). In light of the 
foregoing, we may state the following: 

Theorem 1. If +" (2) E c (-1, 1) in (2.2) and if the relations 

2v (1) - 49’ (1) + 29’ (--I) + 3q (1) + 3l# (-1) = 0 (2.3) 

29” (-1) + 4$‘(-I) - 29’ (1) + 39 (1) + 39 (-1) = 0 

are satisfied, then the solution of the integral equation (2.2) in a space of slowly lncreas- 

ing generalized functions @ /3/ exists, is unique, and has the form 

g(x) = li, (2) + Pi6 (5 + 1) + P,6 (5 - 1) iZ.‘ll 

P, = I&“’ (-1) + ‘i, I$” (--I) + $” (I)], P, = -$” (1) + vz I*” (1) +- qI” (-I)1 (2.51 

Note that the equations (2.3) which are conditions that state the solution of (2.2) (and, 

consequently, (1.9) and (1.10)) are bounded, may be used to define the unknown domain of COP,- 

tact of the die and the covering. 
To prove the theorem, we verify that a function g(z) of the form (2.4) satisfies equa- 

tion (2.2). In fact, substituting it in (2.2) and using the well-known properties of the 

delta function /4/, we arrive at the conclusion that the integral equation (2.2) becomes an 

identity if (2.3) and (2.5) are satisfied. The uniqueness of our solution (2.4) follows from 

a well-known theorem c/4/, p.158). 

Let us now rewrite the integral equation (1.9) in light of the representation (2.1) ln 

the form 

We assume that r(")(z) E C(-i,l). If we now suppose that g(s)= Q (with order equal to 

zero), then by virtue of the properties of F(z) given in the lemma, we will have $4) (I ) Ez 

c (-1, 1). Hence, by Theorem 1, we conclude that Theorem 2 holds. 

Theorem 2. Suppose r(') (5)~ C (-1,l) and let equations (2.3) hold. Then if the solu- 

tion of the integral equation (2.6) in a space of slowly increasing generalized functions ex- 

ists, it will have the form 

g (5) = g* (5) + P,6 (5 + 1) fP,6 (5 - 1) !2.7! 

while the function g*(z)E C(-1,l) 1 a so satisfies a Fredholm equation of the second kind with 

continuous kernel and continuous free term: 

g* (I) + -&- ( g+ (5) F(‘) (+) d% = - h”r@J (5) (2.8) 

The constants P,(j=f,Z)are given by (2.51, while the 

of contact between the die and the surface of the covering 
To prove the theorem, assuming that the function IJ, (5) 

ing, we invert the integral operator in (2.6) with kernel 
integral equation of the second kind for g (r): 

boundaries of the unknown region 

c and b are determined from (2.31~ 

in (2.6) is known for the time be- 

lx-%lS. By (2.4), we obtain an 
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1 

g(r)+& 5 g(E)j+' (+j cy=-hW(z)+P16(2 +d)+ P*6(t- 1) (\rl<i) (2.9) 

-1 

The solution of this equation will be found in the form (2.7). Substituting (2.7) in 

(2.9) and using the properties of the delta function, we arrive at the integral equation (2.8). 

If equation (2.8) is solvable for a specified value hi (0, OD), the function g* (z)~ C(-1, I). 

The initial integral equation (2.6) is uniquely solvable in this case. 

Theorem 3. In the class of functions g* (5) E C (-1, 1) n V (-1, 1), the homogeneous 

equation (2.8) 

(2.10) 

does not have positive eigenvalues. Here V (-1, 1) is the space of functions with finite 

variation on the segment I--1, 11. 
To prove the theorem, we introduce the Fourier transform of the function g*(X): 

G* (u) = 5 g* (z) eiux dz 
-1 

(2.11) 

and rewrite the homogeneous equation (2.10) as follows: 

m 

g* @) -& 1 (~Alh’~~-A3uh~th(Bhu)i A,]L(hu)+ 
-_ 

(2.12) 

Because of the properties of g*(z) given in the conditions of the theorem, the function 

G* (u)is at least continuous and has the estimate /5/ 

G*(u)=O(lul-') (IuI-f=') (2.13) 

Assuming that the nontrivial solution g*(s) exists for the homogeneous equation (2.12), 

we multiply (2.12) scalarly by g*(r). If r-E> 0, in light of the Parceval equation /4/, 

we arrive at a relation of the form 

i - 
2 

7% U ?bw L(b)- 2 I*;f$ ] IG* (u) (2du + ialc14(\G* (-cl) I' - \G* (a) I') = 0 (2.14) 
-m c =1 

If I--_E<O,a, in (2.14) must be replaced by a2, and cl by cI, and conversely. 
Separating the real and imaginary parts in (2.14) and bearing in mind the fact that the 

integrand is sing-constant (this may be verified numerically for different parameters of the 

problem), we conclude that G* (u) 3 0, , whence g* (z) sz 0,, and the theorem is proved. 
Now suppose that a die of thickness 2a has the corner points 

2T = (F2a + c - b)(c + b)-l 

(further, for the sake of definiteness, we will consider the case of a die with a plane recti- 
linear base). Then, bearing in mind in the computations the fact that/(z)= C(--R,R) as well 
as the arguments presented in /2/, we may conclude that the die cannot be brought into con- 
tact with the surface of the covering (1.3) in the neighborhoods of the angular points. Dif- 
ferent variants in which the die is lifted off the plate may be found, in each case the form 

depending upon the actual mechanical characteristics oftheproblems under consideration, which 
we will review below. 

Note that because of the foregoing and the results of Theorem 2, the solution of the in- 
tegral equation (1.9) has in the general case the structure 

g(r) = h (5) + P,6 (z - z-) + Pp6 (I - I+) (2.15) 

and that the function h(r)satisfies equation (1.9). where 

r(x) =+[P&(F) + P,K(F)] 



and the values of the concentrated forces 

z+> 1) 

Pj (i = 1,2) acting at the points 
are found from the linear algebraic system 

5 = si (z- ; - 1, 

K(O)&+ s h(S)K(~)~+K(~)p,=,(6i,-) (2.16) 
-1 

K(O)P,+ s h(E)K(~)~+K(~)P.=~(6+OLT-) 

-1 

3. Let us discuss the solution to the integral equation (1.9). For this purpose, we 

construct a rational function L*(c) of the form 

from the zeros 

u+iu. 

andpolesof the function L(Qwhich is meromorphic in the complex plane 
Here iz,, and i&, are the zeros and poles of L(c), respectively, lying on the 

inary axis and having the asymptote 

5, = z, + 0 (n-3) (n-, a) 

(3.1) 

5= 
imag- 

(3.2) 

(Here we are presenting results for the case in which L(c) h as four single poles on the real 
axis). 

Substituting (3.1) in (l.lO), we obtain 

K(z)=--2n[rjsinCjIzI +-&~Rn4?Xp(-_i,)Z))] 
n=1 

(3.3) 

.i = 1 (Z > O), i = 2 (Z < O), rj = RCB [L (c)f cjl 
R, = i Res IL* (c), i&J (n = 1, 2,. . ., N) 

Then the solution of equation (1.9), (3.31 will have the form 

g (4 = T (4 + 2 [ T,+exp(z.f) + T,-exp(-zz, +)I + P16(z + 1) + Pd@- 1) ( 
n=1 

3.4) 

in accordance with Theorem 2 and previous results /6/, i.e., (3.41 is the sum of a special 

solution of the nonhomogeneous differential equation 

ii ($+z,‘)T(r) =(~-cI~)(+&--cI~) ii (-$+SnP)16+ax-r(z)] 
n=1 n=, 

and the general solution of the homogeneous equation (3.5). 

(j= 1,2) may be found from a system of the type (2.3), while 

linear algebraic system of equations of order 2N, which may 

(3.4) in (1.9) and (3.3) and by equating the coefficients of 

expression. 
In the case of a parabolic die, for example, we obtain 

r(z) = yz*, T(s) = i; bixi, 02 = - hy [L* (O)j-1 
z=o 

wil .1 have the form 

(3.51 

The values of the constants Pj 

the constants T,,* satisfy a 

be obtained by subsituting 
equal exponents in the resulting 

5% = ck2 (ckB + zm2)-’ exp (& z,/h) (k = i, 2) 

The system for determining the constants T,,* after the substitution 

~~,=T,*[z,(l+~)-~]i(c~‘+z,‘)(Sm-zm)l~’exp(~) 



(3.6) 

&Zab* [Z (i + g;‘) + a2 (c;’ - a c;“s;’ 
&, = - hb [2 (1 + g;‘) + hP (C;’ - Cya)l &’ 

while for the coefficients a,, we obtain for large enough j and nthe asymptote (cf. (3.2)) 

a2~,z~,~~j.~,2,_~=O(j~~~xp(-~2n~jj)) (p=aH-‘) (3.7) 

az~,2~~ a~j-1,9n-~=O(j-1~-s); aaj-1,znt Qj, 27X-1 = O UwLn-S) 

Then, by (3.7) we may verify that the solution of the system (3.6) for large enough N 

will be close to the solution of the corresponding infinite system (N = W) relative to the 

norm of the space 1, /a/. 
Analogous results may be obtained for a plane die (because of their cumbersomeness, they 

will not be presented here). We only wish to note that in this case we must set b, =O, and 

the expressions for the right sides will depend on the values of Pa and P,. 

4. As an example, let us consider the motion problem (constant speed) for a die moving 

along the surface of a layer of ice. The ice will be assumed to be elastic, since the effect 

of creep in this case cannot have time to manifest itself and may be neglected. In the ca - 

culations, we3will use the following physical /9/ and mechanical constants: C = 2.4.109 N/m 
$ , 

y* = 880 kg/m , v = 0.34, p = 1000 kg/mj, s = -5.106 N/m2, e = 0, and P = 10:' N/m. 

In studying the motion of a plane die (r(z)=O) with values of the mechanical parameters 

under which the function L(6) does not have any poles on the real axis (for example, W<W, 

for a fixed value of the thickness oftheplate, Fig.l), we find that at values p < 0.1 (p = 3.10') 

the die will come into contact with the plate only at the two extreme points and that the max- 

imal deflection of the plate beneath the die will occur at the middle. when 0.1 <or. <0.15 , the 

maximal deflections will be shifted from the center of the die, and the distance of the plate 

from the die will at the same time decrease. A further increase in the parameter p will lead 
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to contact between the die and the plate, and with W< WC (precritical mode), the zone of 

contact will be symmetric. 

Fig.1 Fig.2 

Fig.3 

Fig.4 

There is a more complicated 

contact mode if the speed of the 

die exceeds WC. Then the func- 

tion L(f) will have four single 

poles on the real axis, symmetric- 

ally located relative tothe origin. 

In Fig.1 may be found curves dep- 

icting the variation in the posi- 

tive poles c1 and cI over some 

interval of variation ofthe speed 

(curves 1, 2, and 3 for h = 0.25; 0.30; 

and 0.35 m, respectively). If L(c) 

has a double pole on the real axis, 

this will correspond to W,. In 

this case, the deflections under 

the die will increase without 

;;und over time (V(Z)-n /9, lo/. 

W>W, , the upper branches 

of the curves will correspond to 

the variation in c1 pole, and the 

lower to -CI. Note that the val- 

ues of the real poles will essenti- 

ally determine the wave pattern 

of the surface of the plate behind 

and in back of the die. Thus, the 
wavelength in front of the die 
will decrease with increasing 

speed, and increase behind the die. 

The die will be in contact with 

the plate over some interval I-c,6] 

and touch it at its rear edge. 
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Curves depicting the variation of the zone of contact as a function of the speed ,.),' i~il,) 
die (solid curves) and as a function of the parameter p (broken curves) are presented ix? ~1:;. 

2 (curve I correspond to variations in the point C, and curve 2, to variations in point b). 
Fig.3 shows the variation in the contact pressure function beneath the die. It is clear tha: 
the contact pressure at the leading edge grows with increasing speed (curves I,Z and 3 were 
obtained for p=0.4 at speeds of 8.15, 8.65, and 9.15 m/s, respectively). The variation ~TI 
the concentrated forces appearing at the edges of the line of contact are presented (solid 

curves) in Fig.4 (curves I,,?, and 3 determine the forces at the points c, b, and a, respectiv- 

ely). The broken curve in Fig.4 shows the variation in the turning angle a.5.i03(rad)(the maximal 

value of the turning angle of the die corresponds approximately to the maximal forces at the 

leading edge of the die), while the dot-and-dash curve corresponds to the deflection of the 

plate beneath the die 6.1@ (m) (as the speed W approaches W,, the deflections will grow 
markedly). 

At a speed of the die W*=l/P, the function ~(5) will have a double pole at the 

origin, which will indicate that deformation of the surface of the plate (understood, as a 

rigid unit) will be observed together with a wave pattern on the surface. When WY 
P' the rear edge of the die will separate from the plate and contact will be present only along the 

segment t-c, bl. As the speed of the die increases over the interval w* < w< W' (6 = 2.10e,HJ* = 

20.6 m/s), the region of contact will increase, and when W>W* start to decrease. The 

turning angles of the die will decrease with increasing speed of the die. Note that a change 
in the contact modes between the die and the plate will be related to qualitative variations 

in the function L(5). 

The authors wish to express their appreciation to V.M. Aleksandrov for his interest in 

the present study. 
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